A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease

Author:

Ferede Melkamu MollaORCID,Mwalili Samuel,Dagne Getachew,Karanja Simon,Hailu Workagegnehu,El-Morshedy MahmoudORCID,Al-Bossly Afrah

Abstract

In clinical and epidemiological studies, when the time-to-event(s) and the longitudinal outcomes are associated, modelling them separately may give biased estimates. A joint modelling approach is required to obtain unbiased results and to evaluate their association. In the joint model, a subject may be exposed to more than one type of failure event (competing risks). Considering the competing event as an independent censoring of the time-to-event process may underestimate the true survival probability and give biased results. Within the joint model, longitudinal outcomes may have nonlinear (irregular) trajectories over time and exhibit skewness with heavy tails. Accordingly, fully parametric mixed-effect models may not be flexible enough to model this type of complex longitudinal data. In addition, assuming a Gaussian distribution for model errors may be too restrictive to adequately represent within-individual variations and may lack robustness against deviation from distributional assumptions. To simultaneously overcome these issues, in this paper, we presented semiparametric joint models for competing risks failure time and skewed-longitudinal data by using a smoothing spline approach and a multivariate skew-t distribution. We also considered different parameterization approaches in the formulation of joint models and used a Bayesian approach to make the statistical inference. We illustrated the proposed methods by analyzing real data on a chronic kidney disease. To evaluate the performance of the methods, we also carried out simulation studies. The results of both the application and simulation studies revealed that the joint modelling approach proposed in this study performed well when the semiparametric, random-effects parameterization, and skew-t distribution specifications were taken into account.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3