Reduce-Order Modeling and Higher Order Numerical Solutions for Unsteady Flow and Heat Transfer in Boundary Layer with Internal Heating

Author:

Bilal MuhammadORCID,Safdar Muhammad,Taj Safia,Zafar AmadORCID,Ali Muhammad UmairORCID,Lee Seung WonORCID

Abstract

We obtain similarity transformations to reduce a system of partial differential equations representing the unsteady fluid flow and heat transfer in a boundary layer with heat generation/absorption using Lie symmetry algebra. There exist seven Lie symmetries for this system of differential equations having three independent and three dependent variables. We use these Lie symmetries for the reduced-order modeling of the flow equations by constructing invariants corresponding to linear combinations of these Lie point symmetries. This procedure reduces one independent variable of the concerned fluid flow model when applied once. Double reductions are achieved by employing invariants twice that lead to ordinary differential equations with one independent and two dependent variables. Similarity transformations are constructed using these two sets of derived invariants corresponding to linear combinations of the Lie point symmetries. These similarity transformations have not been obtained earlier for this flow model. Moreover, the corresponding reduced systems of ordinary differential equations are different from those which exist in the literature for fluid flow and heat transfer that we have been dealing with. We obtain multiple similarity transformations which lead us to new classes of systems of ordinary differential equations. Accurate numerical solutions of these systems are obtained using the combination of an adaptive fourth-order Runge–Kutta method and shooting procedure. Effects of variation of unsteadiness parameter, Prandtl number and heat generation/absorption on fluid velocity, skin friction, surface temperature and heat flux are studied and presented with the help of tables and figures.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3