Fast-MFQE: A Fast Approach for Multi-Frame Quality Enhancement on Compressed Video

Author:

Chen Kemi1ORCID,Chen Jing1,Zeng Huanqiang12,Shen Xueyuan1

Affiliation:

1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China

2. College of Engineering , Huaqiao University, Quanzhou 362021, China

Abstract

For compressed images and videos, quality enhancement is essential. Though there have been remarkable achievements related to deep learning, deep learning models are too large to apply to real-time tasks. Therefore, a fast multi-frame quality enhancement method for compressed video, named Fast-MFQE, is proposed to meet the requirement of video-quality enhancement for real-time applications. There are three main modules in this method. One is the image pre-processing building module (IPPB), which is used to reduce redundant information of input images. The second one is the spatio-temporal fusion attention (STFA) module. It is introduced to effectively merge temporal and spatial information of input video frames. The third one is the feature reconstruction network (FRN), which is developed to effectively reconstruct and enhance the spatio-temporal information. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods in terms of lightweight parameters, inference speed, and quality enhancement performance. Even at a resolution of 1080p, the Fast-MFQE achieves a remarkable inference speed of over 25 frames per second, while providing a PSNR increase of 19.6% on average when QP = 37.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation for Outstanding Young Scholars of Fujian Province

Natural Science Foundation of Fujian Province

Key Science and Technology Project of Xiamen City

Collaborative Innovation Platform Project of Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3