Affiliation:
1. National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
2. Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
Abstract
Photocatalysis, a promising semiconductor-based technology activated by free and eternal solar energy, has great potential for addressing environmental remediation and energy conversion challenges. Concentrated solar power (CSP) technologies, namely parabolic trough reflectors, solar power towers, parabolic dish reflectors and linear Fresnel reflectors, exhibited excellent feasibility for boosting solar-driven photocatalytic processes. Based on the structural characteristics of CSP technologies, the CSP-based photocatalytic reactors could be divided into concentrated types and non/low-concentrated types. This academic review comprehensively investigated the integration of CSP technology in photocatalysis, emphasizing the feasibility of sunlight as an ideal energy source. Additionally, considering the optimal light irradiance and reaction temperature demands for achieving efficient photocatalytic processes, the significance of introducing CSP into solar light-driven photocatalytic reactions was highlighted. Moreover, the current challenges that exist in CSP-based photoreactors were identified, and potential solutions were proposed accordingly. This work hopes to provide some references for the future study of CSP-based photocatalytic reactors under the theme of sustainable development.
Funder
Science and Technology Innovation Project 2021
Science and Technology Innovation Project 2022
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献