Optimal Control of Cascade Hydro Plants as a Prosumer-Oriented Distributed Energy Depot

Author:

Ignaciuk Przemysław1ORCID,Morawski Michał1ORCID

Affiliation:

1. Institute of Information Technology, Lodz University of Technology, Politechniki 8 St., 93-590 Łódź, Poland

Abstract

For political and economic reasons, renewable sources of energy have gained much importance in establishing a sustainable energy economy. By their very nature, however, their benefits depend on changeable weather conditions, and are unrelated to the generation and consumption patterns in industrial or home environments. This generation–dissipation disparity induces price fluctuations and threatens the stability of the supply system, yet can be alleviated by installing energy depots. While the classic methods of energy storage are hardly cost-effective, they may be supplemented, or replaced, by a distributed system of small-scale hydropower plants with ponds used as energy reservoirs. In this paper, following a rigorous mathematical argument, a dynamic model of a multi-cascade of hydropower plants is constructed, and a cost-optimal controller, with formally proven properties, is designed. On the one hand, it allows for an increase in the owners’ revenue by as much as 30% (compared to a free-flow state); on the other hand, it reduces the load fluctuation imposed on the grid and the legacy supply system. Moreover, the risk of floods and droughts downstream resulting from inappropriate use of the plants is averted.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Kolosok, S., Vasylieva, T., Wojciechowski, A., and Morawski, M. (2021). A scoping review of renewable energy, sustainability and the environment. Energies, 14.

2. Distributed optimal control of energy hubs for micro-integrated energy systems;Qu;IEEE Trans. Syst. Man Cybern. Syst.,2021

3. Assessment of energy storage technologies: A review;Rahman;Energy Convers. Manag.,2020

4. PSE (2023, August 28). Market Energy Prices. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-rb/raporty-dobowe-z-funkcjonowania-rb/podstawowe-wskazniki-cenowe-i-kosztowe/rynkowa-cena-energii-elektrycznej-rce.

5. A review of optimization algorithms in solving hydro generation scheduling problems;Awad;Energies,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3