A Wide-Output-Range DC-DC Converter and Minimum Loss Collaborative Control Strategy

Author:

Xue Yuhang12ORCID,Yang Guoliang1ORCID

Affiliation:

1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066000, China

2. School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia

Abstract

In response to the challenges faced by traditional LLC resonant converters in simultaneously achieving a wide output voltage and high efficiency, this paper proposes a cascaded DC-DC converter. The front stage of the converter adopts a new LLC topology, and it is cascaded with a boost converter through a reutilization of the output-side inductor. The proposed DC-DC converter leverages the electrical isolation and wide output voltage range advantages of LLC and boost converters, enabling the overall system to achieve broad output voltage regulation and high-efficiency operation. The reutilization of the inductor design further enhances the integration density of the DC-DC converter. A minimum loss collaborative control strategy is introduced for the proposed DC-DC converter. When determining the output voltage and operating the circuit in step-up mode, the duty cycles of the switch in the proposed LLC converter and the switch in the boost converter are adjusted to minimize overall circuit losses while ensuring the rated output voltage. Ultimately, the correctness and practicality of the proposed DC-DC converter and its control strategy are validated through a simulation and an experiment. The overall efficiency of the DC-DC converter can reach up to 94% under optimal conditions.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer;Lin;IEEE Trans. Ind. Appl.,2018

2. LLC resonant converter topologies and industrial applications—A review;Zeng;Chin. J. Electr.,2020

3. An LLC and LCL-T resonant tanks based topology for battery charger application;Wei;CPSS Trans. Power Electron. Appl.,2021

4. Theoretical evaluation of stability improvement brought by resonant current loop for paralleled LLC converters;Zong;IEEE Trans. Ind. Appl.,2015

5. Hybrid Control Strategy for an Integrated DAB–LLC–DCX DC–DC Converter to Achieve Full-Power-Range Zero-Voltage Switching;Wang;IEEE Trans. Power Electron.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3