A Novel Approach to Using Dual-Field Excited Synchronous Generators as Wind Power Generators

Author:

Agarala Ajaysekhar1ORCID,Bhat Sunil S.1,Zychma Daria2,Sowa Pawel2ORCID

Affiliation:

1. Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India

2. Department of Power System and Control, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

Integrating wind power generators, whose frequency varies in a wide range due to varying wind speeds, into a grid is a formidable problem. At present, the use of permanent magnet synchronous generators (PMSG) and doubly fed induction generators (DFIG) as wind generators with suitable control is the best possible solution. However, a dual-field excited synchronous generator (DESG), which has two windings on the rotor, can also be used for the same purpose with appropriate control. A new control strategy, which essentially employs the d-axis and q-axis components of the alternator terminal voltage, is suggested here. This strategy essentially results in exciting the two field windings with a slip frequency. This eventually holds the stator frequency constant, irrespective of the rotor speed of the wind generator. The difference between the required frequency and the natural frequency, analogous to the rotor speed of the wind power generator, is the slip frequency. The ring modulator automatically adjusts the slip frequency depending on the actual speed of the generator’s rotor. This paper uses the ANSYS MAXWELL 2022 R1 software to design a DESG and uses a ring modulator as the control function generator for feedback with ANSYS TWIN BUILDER 2022 R1. Simulations are carried out using transient–transient co-simulation by combining both of these software tools for cases of both a constant-speed input and of a variable-speed input to the rotor of the machine. Moreover, a mathematical model of the DESG as a wind generator with the proposed controlled strategy is used to perform the stability analysis of a nine-bus three-machine system, and the results are compared with those of conventional wind generators.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3