Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste

Author:

A. Gabbar Hossam1ORCID,Ahmad Muhammad Sajjad1

Affiliation:

1. Department of Energy and Nuclear Engineering, Faculty of Engineering and Applied Science, Ontario Tech University (UOIT), Oshawa, ON L1H 7K4, Canada

Abstract

Within the past few decades, thousands of experiments have been performed to characterize urban waste and biomass to estimate their bioenergy potential and product identification. There is a need to develop an integrated process model based on the experimental literature, as well as simulations to obtain suitable products. In this study, municipal solid waste (MSW), including paper and plastic characterization and an integrated process model, were developed to optimize the final products in a reactor system. The process model has two modes, R&D and reactor control (RC), to obtain suitable products including bio-oil, char, and gases. A database was integrated based on thermokinetics, machine learning, and simulation models to optimize product efficiency. The experimental data include those obtained by thermogravimetric analysis and Fourier-transform infrared spectroscopy, which were linked to a pyrolysis experimental setup. Feedstock product mapping models were incorporated into the database along with the temperature, heating rates, elemental analysis, and final product concentration, which were utilized for the pyrolysis reactor setup. Product feasibility was conducted based on life cycle cost, affordability, and product efficiency. The present work will bridge the gap between experimental studies and decision-making based on obtained products under several experimental conditions around the world.

Funder

NSERC

Mitacs

OCI

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference65 articles.

1. Fetting, C. (2020). The European Green Deal, ESDN Office. ESDN report.

2. Comission, E. (2023, December 20). European Green Deal, Official Website of European Union. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.

3. Potential and impacts of renewable energy production from agricultural biomass in Canada;Liu;Appl. Energy,2014

4. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization;Antar;Renew. Sustain. Energy Rev.,2021

5. Global plastic production rises, recycling lags;Gourmelon;Vital Signs,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3