Site Selection and Capacity Determination of Electric Hydrogen Charging Integrated Station Based on Voronoi Diagram and Particle Swarm Algorithm

Author:

Tian Xueqin12,Yang Heng2,Ge Yangyang3,Yuan Tiejiang2

Affiliation:

1. China Electric Power Research Institute Co., Ltd., Haidian District, Beijing 100192, China

2. School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China

3. Electric Power Research Institute of State Grid Liaoning Electric Power Co., Ltd., Shenyang 110006, China

Abstract

In response to challenges in constructing charging and hydrogen refueling facilities during the transition from conventional fuel vehicles to electric and hydrogen fuel cell vehicles, this paper introduces an innovative method for siting and capacity determination of Electric Hydrogen Charging Integrated Stations (EHCIS). In emphasizing the calculation of vehicle charging and hydrogen refueling demands, the proposed approach employs the Voronoi diagram and the particle swarm algorithm. Initially, Origin–Destination (OD) pairs represent car starting and endpoints, portraying travel demands. Utilizing the traffic network model, Dijkstra’s algorithm determines the shortest path for new energy vehicles, with the Monte Carlo simulation obtaining electric hydrogen energy demands. Subsequently, the Voronoi diagram categorizes the service scope of EHCIS, determining the equipment capacity while considering charging and refueling capabilities. Furthermore, the Voronoi diagram is employed to delineate the EHCIS service scope, determine the equipment capacity, and consider distance constraints, enhancing the rationality of site and service scope divisions. Finally, a dynamic optimal current model framework based on second-order cone relaxation is established for distribution networks. This framework plans each element of the active distribution network, ensuring safe and stable operation upon connection to EHCIS. To minimize the total social cost of EHCIS and address the constraints related to charging equipment and hydrogen production, a siting and capacity model is developed and solved using a particle swarm algorithm. Simulation planning in Sioux Falls city and the IEEE33 network validates the effectiveness and feasibility of the proposed method, ensuring stable power grid operation while meeting automotive energy demands.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3