Response of Preferential Soil Flow to Different Infiltration Rates and Vegetation Types in the Karst Region of Southwest China

Author:

Kan XiaoqingORCID,Cheng Jinhua,Hou Fang

Abstract

The widespread preferential flow phenomenon has an important impact on the water resource allocation of vegetation restoration in karst regions. In this study, four kinds of water infiltration experiments were conducted on six kinds of vegetation types (Pinus yunnanensis Franch. var. tenuifolia plantation forestlands, Eucalyptus robusta Smith plantation forestlands, Platycladus orientalis (L.) Francoptmxjjkmsc plantation forestlands, secondary forestlands, scrublands, and natural grasslands) separately to evaluate the effect of vegetation restoration on preferential flow in karst regions. The distribution of soil water infiltration was visualized via Brilliant Blue staining (290 images of soil vertical section staining) and data were processed via structural equation model (SEM). Results showed that 15–35 mm water accumulation was beneficial to the visualization of preferential flow. The experimental statement of a higher matrix flow in grassland than in plantations made it possible to draw conclusions of economic importance. Therefore, undergrowth of vegetation coverage in plantation forestlands should be increased. Experimentally analyzing the water-vegetation-soil interaction, shows an increase in vegetation coverage inhibits the development of matrix flow, an increase in soil erodibility may inhibit the development of preferential flow, and an increase in soil clay content may promote the deepening of matrix flow depth. The artificial forest can improve the soil structure and can effectively restore the degree of soil fragmentation; vegetation can be restored reasonably to prevent desertification in karst regions. Therefore, identifying and analyzing the structure characteristics of the soil macropore network under the conditions of natural vegetation communities and artificial vegetation communities in karst-geologic settings is an urgent study, which can provide a reference for improving the restoration measures of artificial forests and sustainable forestry development in karst desertification areas.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3