Author:
Zhang Xiwang,Zhu Weiwei,Yan Nana,Wei Panpan,Zhao Yifan,Zhao Hao,Zhu Liang
Abstract
The evaluation of the ecosystem service value (ESV) and its regionalization toward coordinating ecological protection and socioeconomic development is of great significance. In this study, we developed a classification method based on the Random Forest algorithm and a feature optimization method to identify grassland types. Then, we proposed an approach to quantitatively evaluate the ESV of the grassland ecosystem in Ethiopia, in which net primary production derived from remote sensing was used to evaluate organic matter production value (ESV1), promoting nutrient circulation value (ESV2), and gas regulation value (ESV3), the RUSLE model was used to evaluate soil conservation value (ESV4), and cumulative rainfall was used to calculate water conservation value (ESV5). By integrating the mean ESV under various influencing factors, the zoning map of grassland ecosystem service value was obtained. Our study found that more fine grassland types can be well classified with the overall accuracy of 86.52%. And the classification results are the basis of the ESV analysis. The total ESV of grassland ecosystems was found to be USD 105,221.72 million, of which ESV4 was the highest, accounting for 44.09% of the total ESV. The spatial analysis of ESV showed that the differences were due to the impacts of grassland types, elevation, slope, and rainfall. It was found that the grassland is suitable to grow in the elevation zone between approximately 1000 and 2000 m, and the larger the slope and rainfall are, the greater the mean ESV is. The zoning map was used to conclude that the areas from approximately the fourth to sixth level (only 34.78% of the total grassland area, but 65.94% of the total ESV) have better growth status and development potential. The results provide references and bases to support the local coordination and planning of various grassland resources and form reasonable resource utilization and protection measures.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献