Deep Learning for SAR Ship Detection: Past, Present and Future

Author:

Li Jianwei,Xu ConganORCID,Su Hang,Gao Long,Wang Taoyang

Abstract

After the revival of deep learning in computer vision in 2012, SAR ship detection comes into the deep learning era too. The deep learning-based computer vision algorithms can work in an end-to-end pipeline, without the need of designing features manually, and they have amazing performance. As a result, it is also used to detect ships in SAR images. The beginning of this direction is the paper we published in 2017BIGSARDATA, in which the first dataset SSDD was used and shared with peers. Since then, lots of researchers focus their attention on this field. In this paper, we analyze the past, present, and future of the deep learning-based ship detection algorithms in SAR images. In the past section, we analyze the difference between traditional CFAR (constant false alarm rate) based and deep learning-based detectors through theory and experiment. The traditional method is unsupervised while the deep learning is strongly supervised, and their performance varies several times. In the present part, we analyze the 177 published papers about SAR ship detection. We highlight the dataset, algorithm, performance, deep learning framework, country, timeline, etc. After that, we introduce the use of single-stage, two-stage, anchor-free, train from scratch, oriented bounding box, multi-scale, and real-time detectors in detail in the 177 papers. The advantages and disadvantages of speed and accuracy are also analyzed. In the future part, we list the problem and direction of this field. We can find that, in the past five years, the AP50 has boosted from 78.8% in 2017 to 97.8 % in 2022 on SSDD. Additionally, we think that researchers should design algorithms according to the specific characteristics of SAR images. What we should do next is to bridge the gap between SAR ship detection and computer vision by merging the small datasets into a large one and formulating corresponding standards and benchmarks. We expect that this survey of 177 papers can make people better understand these algorithms and stimulate more research in this field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3