A New Approach to Line Simplification Based on Image Processing: A Case Study of Water Area Boundaries

Author:

Shen YilangORCID,Ai TinghuaORCID,He Yakun

Abstract

Line simplification is an important component of map generalization. In recent years, algorithms for line simplification have been widely researched, and most of them are based on vector data. However, with the increasing development of computer vision, analysing and processing information from unstructured image data is both meaningful and challenging. Therefore, in this paper, we present a new line simplification approach based on image processing (BIP), which is specifically designed for raster data. First, the key corner points on a multi-scale image feature are detected and treated as candidate points. Then, to capture the essence of the shape within a given boundary using the fewest possible segments, the minimum-perimeter polygon (MPP) is calculated and the points of the MPP are defined as the approximate feature points. Finally, the points after simplification are selected from the candidate points by comparing the distances between the candidate points and the approximate feature points. An empirical example was used to test the applicability of the proposed method. The results showed that (1) when the key corner points are detected based on a multi-scale image feature, the local features of the line can be extracted and retained and the positional accuracy of the proposed method can be maintained well; and (2) by defining the visibility constraint of geographical features, this method is especially suitable for simplifying water areas as it is aligned with people’s visual habits.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3