Exploring the Long-Term Development of the Ukrainian Energy System

Author:

Petrović Stefan N.ORCID,Diachuk OleksandrORCID,Podolets RomanORCID,Semeniuk AndriiORCID,Bühler FabianORCID,Grandal Rune,Boucenna Mourad,Balyk OlexandrORCID

Abstract

This study analyses the Ukrainian energy system in the context of the Paris Agreement and the need for the world to limit global warming to 1.5 °C. Despite ~84% of greenhouse gas emissions in Ukraine being energy- and process-related, there is very limited academic literature analysing long-term development of the Ukrainian energy system. This study utilises the TIMES-Ukraine model of the whole Ukrainian energy system to address this knowledge gap and to analyse how the energy system may develop until 2050, taking into current and future policies. The results show the development of the Ukrainian energy system based on energy efficiency improvements, electrification and renewable energy. The share of renewables in electricity production is predicted to reach between 45% and 57% in 2050 in the main scenarios with moderate emission reduction ambitions and ~80% in the ambitious alternative scenarios. The cost-optimal solution includes reduction of space heating demand in buildings by 20% in frozen policy and 70% in other scenarios, while electrification of industries leads to reductions in energy intensity of 26–36% in all scenarios except frozen policy. Energy efficiency improvements and emission reductions in the transport sector are achieved through increased use of electricity from 2020 in all scenarios except frozen policy, reaching 40–51% in 2050. The stated policies present a cost-efficient alternative for keeping Ukraine’s greenhouse gas emissions at today’s level.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference64 articles.

1. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2018

2. Adoption of the Paris Agreement,2015

3. Ukraine’s Greenhouse Gas Inventory 1990–2019,2021

4. Updated Nationally Determined Contribution of Ukraine to the Paris Agreement,2021

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3