An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing

Author:

Soltanali HamzehORCID,Khojastehpour MehdiORCID,Farinha José TorresORCID,Pais José Edmundo de Almeida eORCID

Abstract

Process integrity, insufficient data, and system complexity in the automotive manufacturing sector are the major uncertainty factors used to predict failure probability (FP), and which are very influential in achieving a reliable maintenance program. To deal with such uncertainties, this study proposes a fuzzy fault tree analysis (FFTA) approach as a proactive knowledge-based technique to estimate the FP towards a convenient maintenance plan in the automotive manufacturing industry. Furthermore, in order to enhance the accuracy of the FFTA model in predicting FP, the effective decision attributes, such as the experts’ trait impacts; scales variation; and assorted membership, and the defuzzification functions were investigated. Moreover, due to the undynamic relationship between the failures of complex systems in the current FFTA model, a Bayesian network (BN) theory was employed. The results of the FFTA model revealed that the changes in various decision attributes were not statistically significant for FP variation, while the BN model, that considered conditional rules to reflect the dynamic relationship between the failures, had a greater impact on predicting the FP. Additionally, the integrated FFTA–BN model was used in the optimization model to find the optimal maintenance intervals according to the estimated FP and total expected cost. As a case study, the proposed model was implemented in a fluid filling system in an automotive assembly line. The FPs of the entire system and its three critical subsystems, such as the filling headset, hydraulic–pneumatic circuit, and the electronic circuit, were estimated as 0.206, 0.057, 0.065, and 0.129, respectively. Moreover, the optimal maintenance interval for the whole filling system considering the total expected costs was determined as 7th with USD 3286 during 5000 h of the operation time.

Funder

Ferdowsi University of Mashhad

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3