A Comparative Analysis of Computer-Aided Design Tools for Complex Power Electronics Systems

Author:

Bucolo MaideORCID,Buscarino Arturo,Fortuna Luigi,Famoso Carlo,Frasca Mattia,Cucuccio Antonino,Rasconà Gaetano,Vinci Giovanni

Abstract

Companies working on semiconductors must currently assure the customers of not only the performance of the semiconductor device per se, but also its performance when it is implemented in a real board, therefore including the role of parasitic effects. It is therefore very important to evaluate, especially during the design phase, not only the single device, but the complete board and their mutual interactions. This consideration opens a new area of investigation in the field of electronic systems engineering. In the current literature, the problem of a software evaluation of parasitic dynamics and electromagnetic effects on printed boards is addressed from the point of view of researchers. Moreover, it is fundamental to have a complete view of the various tools that could be usefully adopted from the perspective of manufacturers. This is the main motivation of this technical note, which performs a comparative analysis of the most prominent software tools for printed circuit boards’ (PCBs) simulation. The main features, the key aspects, and the limitations of the software packages are analyzed in terms of the industrial design of power electronics devices, in order to ensure efficiency and fastness in the semiconductor market.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Computer-Aided Grading System for College English Translation Examination in Artificial Intelligence System;Lecture Notes in Electrical Engineering;2023

2. Optimization of Laminated Busbars in Traction Inverters of Electric Vehicles for Improved Stray Parameters;Advances in Electrical and Computer Engineering;2023

3. Learning-on-learning approach for modeling;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

4. A model identification strategy to design PCBs for power systems;2022 IEEE 31st International Symposium on Industrial Electronics (ISIE);2022-06-01

5. Model Identification to Validate Printed Circuit Boards for Power Applications: A New Technique;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3