Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction

Author:

Barta Gergo,Pasztor Benedek,Prava Venkat

Abstract

The goal of this paper is to optimally combine day-ahead solar and demand forecasts for the optimal battery schedule of a hybrid solar and battery farm connected to a distribution station. The objective is to achieve the maximum daily peak load reduction and charge battery with maximum solar photovoltaic energy. The innovative part of the paper lies in the treatment for the errors in solar and demand forecasts to then optimize the battery scheduler. To test the effectiveness of the proposed methodology, it was applied in the data science challenge Presumed Open Data 2021. With the historical Numerical Weather Prediction (NWP) data, solar power plant generation and distribution-level demand data provided, the proposed methodology was tested for four different seasons. The evaluation metric used is the peak reduction score (defined in the paper), and our approach has improved this KPI from 82.84 to 89.83. The solution developed achieved a final place of 5th (out of 55 teams) in the challenge.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3