Neural Architecture Comparison for Bibliographic Reference Segmentation: An Empirical Study

Author:

Cuéllar Hidalgo Rodrigo1ORCID,Pinto Elías Raúl2ORCID,Torres-Moreno Juan-Manuel3ORCID,Vergara Villegas  Osslan Osiris4ORCID,Reyes Salgado Gerardo5ORCID,Magadán Salazar Andrea2ORCID

Affiliation:

1. Biblioteca Daniel Cosío Villegas, El Colegio de México, Carretera Picacho Ajusco 20, Mexico City 14110, Mexico

2. Tecnológico Nacional de México/CENIDET, Cuernavaca 62490, Mexico

3. Laboratoire Informatique d’Avignon, Université d’Avignon, 339 Chemin des Meinajariès, CEDEX 9, 84911 Avignon, France

4. Industrial and Manufacturing Engineering Department, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico

5. Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Av. del Alcalde de Móstoles, 28933 Madrid, Spain

Abstract

In the realm of digital libraries, efficiently managing and accessing scientific publications necessitates automated bibliographic reference segmentation. This study addresses the challenge of accurately segmenting bibliographic references, a task complicated by the varied formats and styles of references. Focusing on the empirical evaluation of Conditional Random Fields (CRF), Bidirectional Long Short-Term Memory with CRF (BiLSTM + CRF), and Transformer Encoder with CRF (Transformer + CRF) architectures, this research employs Byte Pair Encoding and Character Embeddings for vector representation. The models underwent training on the extensive Giant corpus and subsequent evaluation on the Cora Corpus to ensure a balanced and rigorous comparison, maintaining uniformity across embedding layers, normalization techniques, and Dropout strategies. Results indicate that the BiLSTM + CRF architecture outperforms its counterparts by adeptly handling the syntactic structures prevalent in bibliographic data, achieving an F1-Score of 0.96. This outcome highlights the necessity of aligning model architecture with the specific syntactic demands of bibliographic reference segmentation tasks. Consequently, the study establishes the BiLSTM + CRF model as a superior approach within the current state-of-the-art, offering a robust solution for the challenges faced in digital library management and scholarly communication.

Publisher

MDPI AG

Reference28 articles.

1. Khabsa, M., and Giles, C.L. (2014). The number of scholarly documents on the public web. PLoS ONE, 9.

2. Ware, M., and Mabe, M. (2015). The STM Report: An Overview of Scientific and Scholarly Journal Publishing, International Association of Scientific, Technical, and Medical Publishers.

3. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references;Bornmann;J. Assoc. Inf. Sci. Technol.,2015

4. Citation Analysis of Master’s Theses and Doctoral Dissertations: Balancing Library Collections With Students’ Research Information Needs;Becker;J. Acad. Librariansh.,2015

5. A Hybrid Approach and Unified Framework for Bibliographic Reference Extraction;Rizvi;IEEE Access,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3