Effects of V and Co Element Addition on Microstructures and the Mechanical Properties of In Situ Biphasic Hybrid (TiCxNy–TiB2)/Ni Cermets

Author:

Qiu Feng,Duan Xiangzheng,Li XiujuanORCID,Yang Hongyu,Wang Yawei

Abstract

In situ micro-(TiCxNy–TiB2)/Ni cermets with different Co and V content (2,5 and 8 wt.%) were successfully fabricated by combustion synthesis and hot press consolidation in Ni–(V/Co)–Ti–B4C–BN systems. The results indicate that as Co content increased from 0 to 8 wt.%, the average sizes of the ceramic particles decreased, when the content of V increased from 0 to 8 wt.%, the size of the ceramic particles first decreased and then increased, and when the V content is 5%, the ceramic particle size is the smallest. The Co element did not participate in the SHS reaction and was a diluent; therefore, when the Co element was added, the combustion temperature continued to decrease. When the V content was no more than 5 wt.%, as the V content increased, the maximum combustion temperature decreased. When the content of V was less than 5 wt.%, the concentration of V was not sufficient to greatly promote the generation of VN. Therefore, V absorbed a large amount of heat during the reaction, resulting in a continuous decrease in the reaction temperature of the reaction system during the reaction. When the content of the added V continued to increase to 8 wt.%, V participated in the reaction, which was exothermic. The results indicate that as Co content increased from 0 to 8 wt.%, the average sizes of the ceramic particles decreased, and the cermets with 5 wt.% Co possessed the best comprehensive properties: the highest hardness (1967 Hv), superior compression strength (3.25 GPa) and higher fracture strain (3.3%). Correspondingly, when the V content was 8 wt.%, the ultimate compressive strength and hardness of the cermets reached 1823 Hv and 3.11 GPa, respectively, 262 Hv and 0.17 GPa higher than those of the unalloyed cermets, respectively. Furthermore, the effects of Co and V on strengthening mechanisms were analyzed.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3