Transfer Convolutional Neural Network for Cross-Project Defect Prediction

Author:

Qiu Shaojian,Xu Hao,Deng Jiehan,Jiang Siyu,Lu Lu

Abstract

Cross-project defect prediction (CPDP) is a practical solution that allows software defect prediction (SDP) to be used earlier in the software lifecycle. With the CPDP technique, the software defect predictor trained by labeled data of mature projects can be applied for the prediction task of a new project. Most previous CPDP approaches ignored the semantic information in the source code, and existing semantic-feature-based SDP methods do not take into account the data distribution divergence between projects. These limitations may weaken defect prediction performance. To solve these problems, we propose a novel approach, the transfer convolutional neural network (TCNN), to mine the transferable semantic (deep-learning (DL)-generated) features for CPDP tasks. Specifically, our approach first parses the source file into integer vectors as the network inputs. Next, to obtain the TCNN model, a matching layer is added into convolutional neural network where the hidden representations of the source and target project-specific data are embedded into a reproducing kernel Hilbert space for distribution matching. By simultaneously minimizing classification error and distribution divergence between projects, the constructed TCNN could extract the transferable DL-generated features. Finally, without losing the information contained in handcrafted features, we combine them with transferable DL-generated features to form the joint features for CPDP performing. Experiments based on 10 benchmark projects (with 90 pairs of CPDP tasks) showed that the proposed TCNN method is superior to the reference methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3