Abstract
A binder plays an important role in lithium-ion batteries (LIBs), especially for the electrode materials which have large volume expansion during charge and discharge. In this work, we designed a cross-linked polymeric binder with an esterification reaction of Sodium Carboxymethyl Cellulose (CMC) and Fumaric Acid (FA), and successfully used it in an Sb2O3 anode for LIBs. Compared with conventional binder polyvinylidene fluoride (PVDF) and CMC, the new cross-linked binder improves the electrochemical stability of the Sb2O3 anode. Specifically, with CMC-FA binder, the battery could deliver ~611.4 mAh g−1 after 200 cycles under the current density of 0.2 A g−1, while with PVDF or CMC binder, the battery degraded to 265.1 and 322.3 mAh g−1, respectively. The improved cycling performance is mainly due to that the cross-linked CMC-FA network could not only efficiently improve the contact between Sb2O3 and conductive agent, but can also buffer the large volume charge of the electrode during repeated charge/discharge cycles.
Funder
the Chinese 02 Special Fund
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献