A Study on Technology Competition of Graphene Biomedical Technology Based on Patent Analysis

Author:

Yang XiORCID,Liu Xin,Song JunORCID

Abstract

Graphene, with high biocompatibility, physiological solubility and stability, has been reported as an emerging material for biomedical applications such as biosensors, drug delivery, and tissue engineering. Recently, identifying the technological competition (TC) of graphene biomedical technology has received worldwide attention from stakeholders. However, few studies have attached great importance to review the TC of this field by the analysis of patents. The main objective of this study is to develop a new and comprehensive method to investigate TC in a given technology field by conducting a patent review and then employing a patent roadmap to dig out the technology opportunity. The effectiveness of the approach is verified with the case study on graphene biomedical technology. Compared to previous research, this study makes the following important contributions. First, this study provides a new and systematic framework for the dynamic analysis of TC in a given technology field. It also extends the research perspectives of TC for industry, assignees, and technology, employs a patent roadmap to dig out technology opportunities, and enables stakeholders to understand TC from a dynamic perspective. Second, this study integrates patent analysis with a patent roadmap that has not appeared in existing methodologies of patent review. Third, it first introduces indicators (e.g., high value patent and competition position of top assignees) to the previous patent roadmap and provides a new methodology for patent roadmaps from a country level and assignee level. Finally, this study provides useful information for stakeholders interested in graphene biomedical technology, helps them to find new technology opportunities in this field, encourages them to determine the direction of future research, and has important significance for its application to diverse other emerging technologies.

Funder

Department of Science and Technology of Sichuan Province

Ministry of Education of the People's Republic of China

China's State Intellectual Property Office

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3