Treatment of Organic Matter and Tetracycline in Water by Using Constructed Wetlands and Photocatalysis

Author:

Nguyen ,Chao ,Chen

Abstract

In this study, the ability of a bench-scale simulated constructed wetland (CW) to remove organic matter (OM) and tetracycline (TC) from water was examined. The performance of CW was evaluated by varying the initial concentrations of the target compounds and the hydraulic retention times (HRTs). Findings showed that OM removal efficiencies were 55.2–80.8%, 28.1–71.9% and 72.1–79.7% for ultraviolet absorbance at 254 nm (UV-254), dissolved organic carbon (DOC) and soluble chemical oxygen demand (sCOD) respectively, under 1 day-HRT, whereas higher initial DOC concentration achieved better removal efficiencies. Changing from 1 day-HRT to 2 day-HRT, the removal efficiency of OMs remained practically unchanged, while that of NH3-N increased considerably, from 61.7% to 73.0%, implying that the removal of ammonia in CW needs a longer time for complete treatment. CW also showed an excellent performance in removing TC, especially in the first two hours of operation through the absorption process. In addition, the findings from this research revealed an improvement in effluent water quality when photocatalysis (TiO2/α-Al2O3, with ultraviolet A (UVA) irradiation) was used as the post-treatment following CW, presented by the increase in removal efficiency of OMs of the combined system compared to that of CW alone. This study points to the possible and promising application of the low-cost water treatment system for dealing with OMs and TC in water.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3