Abstract
Biotrickling filters’ control for H2S removal has special challenges because of complexity of the systems. Feedback and feedforward control were implemented in an anoxic biotrickling filter, operated in co-current flow mode and using nitrite as an electron acceptor. The feedback controller was tuned by three methods—two based on Ziegler-Nichols’ rules (step-response and maintained oscillation) and the third using the Approximate M-constrained Integral Gain Optimization (AMIGO). Inlet H2S staircase step perturbations were studied using a feedforward control and the effect of EBRT considered by feedback control. The tuning method by maintained oscillation shows the lower errors. The selected controller was a PI, because unstable behavior at the lowest H2S inlet loading was found under a PID controller. The PI control was able to maintain an outlet H2S concentration of 14.7 ± 0.45 ppmV at three EBRT, studied at 117 s, 92 s and 67 s. Therefore, desulfurized biogas could be used to feed a fuel cell. Feedforward control enhances BTF performance compared to the system without control. The maximum outlet H2S concentration was reduced by 26.18%, although sulfur selectivity did not exceed 55%, as elemental sulfur was the main oxidation product.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference39 articles.
1. Control System Design Lecture Notes for ME 155A;Aström,2002
2. Chapter 3 Process Control;Poe,2017
3. Identification and Control of Unstable Biochemical Reactor
4. Fuzzy logic based set-point weight tuning of PID controllers
5. Autotuning for PID Controllers. Relay Feedback Approach;Yu,1999
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献