Forecasting of Debris Flow Using Machine Learning-Based Adjusted Rainfall Information and RAMMS Model

Author:

Oh Cheong-HyeonORCID,Choo Kyung-SuORCID,Go Chul-Min,Choi Jung-RyelORCID,Kim Byung-Sik

Abstract

In recent years, climate change and extreme weather conditions have caused natural disasters of various sizes and forms across the world. The increase in the resulting flood damage and secondary damage has also inflicted massive social and economic harm. Korea is no exception, where debris flows created by typhoons and localized heavy rainfalls have caused human injuries and property damage in the Wumyeonsan Mountain in Seoul, Majeoksan Mountain in Chuncheon, Sinnam in Samcheok, Gokseong in Jeollanam-do, and Anseong in Gyeonggi-do. Disaster damage needs to be minimized by preparing for typhoons and heavy rainfalls that cause debris flow. To that end, we need accurate prediction of rainfall and flooding through simulations based on debris flow models. Most of the previous literature analyzed debris flows using rainfall events in the past before debris flow occurrence, rather than analyzing and predicting based on rainfall predictions. The main body of this study assesses the applicability of hydrological quantitative precipitation forecast (HQPF) generated through a machine learning method named the Random Forest (RF) method to debris flow analysis models. To that end, this study uses scatter plots to compare and analyze the precipitation observation data collected from the areas hit by debris flows in the past, and the quantitative precipitation forecast (QPF) and HQPF data from the Korea Meteorological Administration (KMA). Based on the verified HQPF data, runoff was calculated using the spatial runoff assessment tool (S-RAT) model, and the soil amount was calculated to simulate the debris flow damage with a two-dimensional rapid mass movements (RAMMS) model. The debris flow simulation based on the said data indicated varying degrees of flow depth, impact force, speed, and damage area depending on the precipitation. The correction of the HQPF was verified by measuring and comparing the spatial location accuracy by analyzing the Lee Sallee shape index (LSSI) of the damage areas. The findings confirm the correction of the HQPF based on machine learning and indicate its applicability to debris flow models.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference37 articles.

1. A Study on the Debris Flow Movement and the Run-out Calculation Using the Coupling of Flood Runoff Model and Debris Flow Model

2. Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan;Choi;J. Korean Assoc. Geogr. Inf. Stud.,2018

3. Run-out Modeling of Debris Flows in Mt. Umyeon using FLO-2D;Kim;J. Civ. Environ. Eng. Res.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3