Biserial Miyaguchi–Preneel Blockchain-Based Ruzicka-Indexed Deep Perceptive Learning for Malware Detection in IoMT

Author:

Alotaibi Abdullah ShawanORCID

Abstract

Detection of unknown malware and its variants remains both an operational and a research challenge in the Internet of Things (IoT). The Internet of Medical Things (IoMT) is a particular type of IoT network which deals with communication through smart healthcare (medical) devices. One of the prevailing problems currently facing IoMT solutions is security and privacy vulnerability. Previous malware detection methods have failed to provide security and privacy. In order to overcome this issue, the current study introduces a novel technique called biserial correlative Miyaguchi–Preneel blockchain-based Ruzicka-index deep multilayer perceptive learning (BCMPB-RIDMPL). The present research aims to improve the accuracy of malware detection and minimizes time consumption. The current study combines the advantages of machine-learning techniques and blockchain technology. The BCMPB-RIDMPL technique consists of one input layer, three hidden layers, and one output layer to detect the malware. The input layer receives the number of applications and malware features as input. After that, the malware features are sent to the hidden layer 1, in which feature selection is carried out using point biserial correlation, which reduces the time required to detect the malware. Then, the selected features and applications are sent to the hidden layer 2. In that layer, Miyaguchi–Preneel cryptographic hash-based blockchain is applied to generate the hash value for each selected feature. The generated hash values are stored in the blockchain, after which the classification is performed in the third hidden layer. The BCMPB-RIDMPL technique uses the Ruzicka index to verify the hash values of the training and testing malware features. If the hash is valid, then the application is classified as malware, otherwise it is classified as benign. This method improves the accuracy of malware detection. Experiments have been carried out on factors such as malware detection accuracy, Matthews’s correlation coefficient, and malware detection time with respect to a number of applications. The observed quantitative results show that our proposed BCMPB-RIDMPL method provides superior performance compared with state-of-the-art methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3