Abstract
Correct ego-lane index estimation is essential for lane change and decision making for intelligent vehicles, especially in global navigation satellite system (GNSS)-challenged environments. To achieve this, we propose an ego-lane index estimation approach in an urban scenario based on particle filter (PF). The particles are initialized and propagated by dead reckoning with inertial measurement unit (IMU) and odometry. A lane-level map is used to navigate the particles taking advantage of topologic and geometric information of lanes. GNSS single-point positioning (SPP) can provide position estimation with meter-level accuracy in urban environments, which can limit drift introduced by dead reckoning for updating the weight of each particle. Light detection and ranging (LiDAR) is a common sensor in an intelligent vehicle. A LiDAR-based road boundary detection method provides distance measurements from the vehicle to the left/right road boundaries, which provides a measurement for importance weighting. However, the high precision of the LiDAR measurements may put a tight constraint on the distribution of particles, which can lead to particle degeneration with sparse particle sets. To deal with this problem, we propose a novel step that shifts particles laterally based on LiDAR measurements instead of importance weighting in the traditional PF scheme. We tested our methods on an urban expressway at a low traffic volume period to ensure road boundaries can be detected by LiDAR measurements at most time steps. Experimental results prove that our improved PF scheme can correctly estimate ego-lane index at all time steps, while the traditional PF scheme produces wrong estimations at some time steps.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference33 articles.
1. Multi-Lane Detection Based on Deep Convolutional Neural Network
2. An empirical evaluation of deep learning on highway driving;Huval;arXiv,2015
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献