Conversion of Natural Biowaste into Energy Storage Materials and Estimation of Discharge Capacity through Transfer Learning in Li-Ion Batteries

Author:

Nanthagopal Murugan1ORCID,Mouraliraman Devanadane1,Han Yu-Ri2,Ho Chang Won1,Obregon Josue34ORCID,Jung Jae-Yoon23ORCID,Lee Chang Woo13ORCID

Affiliation:

1. Department of Chemical Engineering (Integrated Engineering Program), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea

2. Department of Industrial and Management Systems Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea

3. Center for the SMART Energy Platform, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea

4. Department of Industrial Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

Abstract

To simultaneously reduce the cost of environmental treatment of discarded food waste and the cost of energy storage materials, research on biowaste conversion into energy materials is ongoing. This work employs a solid-state thermally assisted synthesis method, transforming natural eggshell membranes (NEM) into nitrogen-doped carbon. The resulting NEM-coated LFP (NEM@LFP) exhibits enhanced electrical and ionic conductivity that can promote the mobility of electrons and Li-ions on the surface of LFP. To identify the optimal synthesis temperature, the synthesis temperature is set to 600, 700, and 800 °C. The NEM@LFP synthesized at 700 °C (NEM 700@LFP) contains the most pyrrolic nitrogen and has the highest ionic and electrical conductivity. When compared to bare LFP, the specific discharge capacity of the material is increased by approximately 16.6% at a current rate of 0.1 C for 50 cycles. In addition, we introduce innovative data-driven experiments to observe trends and estimate the discharge capacity under various temperatures and cycles. These data-driven results corroborate and support our experimental analysis, highlighting the accuracy of our approach. Our work not only contributes to reducing environmental waste but also advances the development of efficient and eco-friendly energy storage materials.

Funder

National Research Foundation of Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3