Modeling Average Grain Velocity for Rectangular Channel Using Soft Computing Techniques

Author:

Kumari Anuradha,Kumar Akhilesh,Kumar ManishORCID,Kuriqi AlbanORCID

Abstract

This study was undertaken with the primary objective of modeling grain velocity based on experimental data obtained under the controlled conditions of a laboratory using a rectangular hydraulic tilting channel. Soft computing approaches, i.e., support vector machine (SVM), artificial neural network (ANN), and multiple linear regression (MLR), were applied to simulate grain velocity using four input variables; shear velocity, exposed area to base area ratio (EATBAR), relative depth, and sediment particle weight. Quantitative performance evaluation of predicted values was performed with the help of three different standard statistical indices, such as the root mean square error (RMSE), Pearson’s correlation coefficient (PCC), and Wilmot index (WI). The results during the testing phase revealed that the SVM model has RMSE (m/s), PCC, and WI values obtained as 0.1195, 0.8877, and 0.7243, respectively, providing more accurate predictions than the MLR and ANN models during the testing phase.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3