Author:
Chhetri Manoj,Kumar Sudhanshu,Pratim Roy Partha,Kim Byung-Gyu
Abstract
Rainfall prediction is an important task due to the dependence of many people on it, especially in the agriculture sector. Prediction is difficult and even more complex due to the dynamic nature of rainfalls. In this study, we carry out monthly rainfall prediction over Simtokha a region in the capital of Bhutan, Thimphu. The rainfall data were obtained from the National Center of Hydrology and Meteorology Department (NCHM) of Bhutan. We study the predictive capability with Linear Regression, Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional Long Short Term Memory (BLSTM) based on the parameters recorded by the automatic weather station in the region. Furthermore, this paper proposes a BLSTM-GRU based model which outperforms the existing machine and deep learning models. From the six different existing models under study, LSTM recorded the best Mean Square Error (MSE) score of 0.0128. The proposed BLSTM-GRU model outperformed LSTM by 41.1% with a MSE score of 0.0075. Experimental results are encouraging and suggest that the proposed model can achieve lower MSE in rainfall prediction systems.
Subject
General Earth and Planetary Sciences
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献