Abstract
Although efforts and progress have been made in crop classification using optical remote sensing images, it is still necessary to make full use of the high spatial, temporal, and spectral resolutions of remote sensing images. However, with the increasing volume of remote sensing data, a key emerging issue in the field of crop classification is how to find useful information from massive data to balance classification accuracy and processing time. To address this challenge, we developed a novel crop classification method, combining optimal feature selection (OFSM) with hybrid convolutional neural network-random forest (CNN-RF) networks for multi-temporal optical remote sensing images. This research used 234 features including spectral, segmentation, color, and texture features from three scenes of Sentinel-2 images to identify crop types in the Jilin province of northeast China. To effectively extract the effective features of remote sensing data with lower time requirements, the use of OFSM was proposed with the results compared with two traditional feature selection methods (TFSM): random forest feature importance selection (RF-FI) and random forest recursive feature elimination (RF-RFE). Although the time required for OFSM was 26.05 s, which was between RF-FI with 1.97 s and RF-RFE with 132.54 s, OFSM outperformed RF-FI and RF-RFE in terms of the overall accuracy (OA) of crop classification by 4% and 0.3%, respectively. On the basis of obtaining effective feature information, to further improve the accuracy of crop classification we designed two hybrid CNN-RF networks to leverage the advantages of one-dimensional convolution (Conv1D) and Visual Geometry Group (VGG) with random forest (RF), respectively. Based on the selected optimal features using OFSM, four networks were tested for comparison: Conv1D-RF, VGG-RF, Conv1D, and VGG. Conv1D-RF achieved the highest OA at 94.27% as compared with VGG-RF (93.23%), Conv1D (92.59%), and VGG (91.89%), indicating that the Conv1D-RF method with optimal feature input provides an effective and efficient method of time series representation for multi-temporal crop-type classification.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献