Abstract
In the so-called point-mass modeling, surface densities are represented by point masses, providing only an approximated solution of the surface integral for the gravitational potential. Here, we propose a refinement for the point-mass modeling based on Taylor series expansion in which the zeroth-order approximation is equivalent to the point-mass solution. Simulations show that adding higher-order terms neglected in the point-mass modeling reduces the error of inverted mass changes of up to 90% on global and Antarctica scales. The method provides an alternative to the processing of the Level-2 data from the Gravity Recovery and Climate Experiment (GRACE) mission. While the evaluation of the surface densities based on improved point-mass modeling using ITSG-Grace2018 Level-2 data as observations reveals noise level of approximately 5.77 mm, this figure is 5.02, 6.05, and 5.81 mm for Center for Space Research (CSR), Goddard Space Flight Center (GSFC), and Jet Propulsion Laboratory (JPL) mascon solutions, respectively. Statistical tests demonstrate that the four solutions are not significant different (95% confidence) over Antarctica Ice Sheet (AIS), despite the slight differences seen in the noises. Therefore, the estimated noise level for the four solutions indicates the quality of GRACE mass changes over AIS. Overall, AIS shows a mass loss of −7.58 mm/year during 2003–2015 based on the improved point-mass solution, which agrees with the values derived from mascon solutions.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference63 articles.
1. GRACE Measurements of Mass Variability in the Earth System
2. Contributions of GRACE to understanding climate change
3. UTCSR Level-2 Processing Standards Document: For Level-2 Product Release 0006;Bettadpur,2018
4. JPL Level-2 Processing Standards Document for Level-2 Product Release 05.1;Watkins,2014
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献