Soil Moisture Retrievals by Combining Passive Microwave and Optical Data

Author:

Tong Cheng,Wang Hongquan,Magagi Ramata,Goïta Kalifa,Zhu Luyao,Yang Mengying,Deng Jinsong

Abstract

This paper aims to retrieve the temporal dynamics of soil moisture from 2015 to 2019 over an agricultural site in Southeast Australia using the Soil Moisture Active Passive (SMAP) brightness temperature. To meet this objective, two machine learning approaches, Random Forest (RF), Support Vector Machine (SVM), as well as a statistical Ordinary Least Squares (OLS) model were established, with the auxiliary data including the 16-day composite MODIS NDVI (MOD13Q1) and Surface Temperature (ST). The entire data were divided into two parts corresponding to ascending (6:00 p.m. local time) and descending (6:00 a.m. local time) orbits of SMAP overpasses. Thus, the three models were trained using the descending data acquired during the five years (2015 to 2019), and validated using the ascending product of the same period. Consequently, three different temporal variations of the soil moisture were obtained based on the three models. To evaluate their accuracies, the retrieved soil moisture was compared against the SMAP level-2 soil moisture product, as well as to in-situ ground station data. The comparative results show that the soil moisture obtained using the OLS, RF and SVM algorithms are highly correlated to the SMAP level-2 product, with high coefficients of determination (R2OLS = 0.981, R2SVM = 0.943, R2RF = 0.983) and low RMSE (RMSEOLS = 0.016 cm3/cm3, RMSESVM = 0.047 cm3/cm3, RMSERF = 0.016 cm3/cm3). Meanwhile, the estimated soil moistures agree with in-situ station data across different years (R2OLS = 0.376~0.85, R2SVM = 0.376~0.814, R2RF = 0.39~0.854; RMSEOLS = 0.049~0.105 cm3/cm3, RMSESVM = 0.073~0.1 cm3/cm3, RMSERF = 0.047~0.102 cm3/cm3), but an overestimation issue is observed for high vegetation conditions. The RF algorithm outperformed the SVM and OLS, in terms of the agreement with the ground measurements. This study suggests an alternative soil moisture retrieval scheme, in complementary to the SMAP baseline algorithm, for a fast soil moisture retrieval.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3