A Near Real-Time Method for Forest Change Detection Based on a Structural Time Series Model and the Kalman Filter

Author:

Puhm Martin,Deutscher Janik,Hirschmugl ManuelaORCID,Wimmer Andreas,Schmitt Ursula,Schardt Mathias

Abstract

The increasing availability of dense time series of earth observation data has incited a growing interest in time series analysis for vegetation monitoring and change detection. Vegetation monitoring algorithms need to deal with several time series characteristics such as seasonality, irregular sampling intervals, and signal artefacts. While common algorithms based on deterministic harmonic regression models account for intra-annual seasonality, inter-annual variations of the seasonal pattern related to shifts in vegetation phenology due to different temperature and rainfall are usually not accounted for. We propose a transition to stochastic modelling and present a near real-time change detection method that combines a structural time series model with the Kalman filter. The model continuously adapts to new observations and allows to better separate phenology-related deviations from vegetation anomalies or land cover changes. The method is tested in a forest change detection application aiming at the assessment of damages caused by storm events and insect calamities. Forest changes are detected based on the cumulative sum control chart (CUSUM) which is used to decide if new observations deviate from model-based forecasts. The performance is evaluated in two test sites, one in Malawi (dry tropical forest) and one in Austria (temperate deciduous, coniferous and mixed forests) based on Sentinel-2 time series. Both forest areas are characterized by a distinct, but temporally varying leaf-off season. The presented change detection method shows overall accuracies above 99%, users’ accuracies of 76.8% to 88.6%, and producers’ accuracies of 68.2% to 80.4% for the forest change stratum (minimum mapping unit: 0.1 ha). Results are based on visually interpreted points derived by stratified random sampling. A further analysis revealed that increasing the time series density by merging data from two Sentinel-2 orbits yields better forest change detection accuracies in comparison to using data from one orbit only. The resulting increase in users’ accuracy amounts to 7.6%. The presented method is capable of near real-time processing and could be used for a variety of automated forest monitoring applications.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3