Characterizing the Error and Bias of Remotely Sensed LAI Products: An Example for Tropical and Subtropical Evergreen Forests in South China

Author:

Zhao Yuan,Chen XiaoqiuORCID,Smallman Thomas LukeORCID,Flack-Prain Sophie,Milodowski David T.,Williams MathewORCID

Abstract

Leaf area is a key parameter underpinning ecosystem carbon, water and energy exchanges via photosynthesis, transpiration and absorption of radiation, from local to global scales. Satellite-based Earth Observation (EO) can provide estimates of leaf area index (LAI) with global coverage and high temporal frequency. However, the error and bias contained within these EO products and their variation in time and across spatial resolutions remain poorly understood. Here, we used nearly 8000 in situ measurements of LAI from six forest environments in southern China to evaluate the magnitude, uncertainty, and dynamics of three widely used EO LAI products. The finer spatial resolution GEOV3 PROBA-V 300 m LAI product best estimates the observed LAI from a multi-site dataset (R2 = 0.45, bias = −0.54 m2 m−2, RMSE = 1.21 m2 m−2) and importantly captures canopy dynamics well, including the amplitude and phase. The GEOV2 PROBA-V 1 km LAI product performed the next best (R2 = 0.36, bias = −2.04 m2 m−2, RMSE = 2.32 m2 m−2) followed by MODIS 500 m LAI (R2 = 0.20, bias = −1.47 m2 m−2, RMSE = 2.29 m2 m−2). The MODIS 500 m product did not capture the temporal dynamics observed in situ across southern China. The uncertainties estimated by each of the EO products are substantially smaller (3–5 times) than the observed bias for EO products against in situ measurements. Thus, reported product uncertainties are substantially underestimated and do not fully account for their total uncertainty. Overall, our analysis indicates that both the retrieval algorithm and spatial resolution play an important role in accurately estimating LAI for the dense canopy forests in Southern China. When constraining models of the carbon cycle and other ecosystem processes are run, studies should assume that current EO product LAI uncertainty estimates underestimate their true uncertainty value.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3