Effect of Heat Treatment Processes on the Microstructure and Mechanical Properties of High-Strength Aluminum Alloy Deposited Layers Processed by Fused Arc Additive Manufacturing

Author:

Shen Zhigang1,Wu Zhisheng1,Wang Ting23,Jia Tuosheng1,Liu Cuirong1

Affiliation:

1. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology at Weihai, Weihai 264209, China

3. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China

Abstract

In this study, 7075 aluminum alloy welding wire with TiB2 nanoparticle reinforcement as an additive together with the variable polarity TIG welding arc as a heat source were applied to produce thin-walled deposited layer samples. Results indicated that the performance of the deposited structure of 7075 aluminum alloy with a TiB2 reinforcement phase was significantly improved compared to the deposited structure of ordinary 7075 aluminum alloy welding wire. Meanwhile, the precipitation of the TiB2 reinforcement phase was insufficient within the structure, and the enhancing effect could not be fully exerted. Moreover, the 7-series aluminum alloy contained a large amount of Zn and Mg elements inside. If the soluble crystalline phase was not fully dissolved, severe stress corrosion could be caused, which inevitably led to a decrease in the mechanical properties. To further improve the performance of the deposited layer, a T6 heat treatment process was performed at 470 °C for 2 h, followed by rapid cooling with distilled water and artificial aging at 120 °C for 24 h. After heat treatment, many second phases appeared in the microstructure of the deposited layer, and the tensile strength increased from (361.8 ± 4.8) MPa to (510.2 ± 5.4) MPa together with the elongation which increased from (9.5 ± 0.5) % to (10.2 ± 0.4) %. The fracture mode of the fracture was a ductile fracture along grain boundaries. The microhardness increased from (145 ± 5) HV to (190 ± 4) HV and exhibited good corrosion resistance in a 3.5% NaCl solution corrosion test.

Funder

Shandong Provincial Key Research and Development Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3