A Study on Surface Hardening and Wear Resistance of AISI 52100 Steel by Ultrasonic Nanocrystal Surface Modification and Electrolytic Plasma Surface Modification Technologies

Author:

Magazov Nurtoleu12ORCID,Satbaeva Zarina3,Rakhadilov Bauyrzhan3,Amanov Auezhan45ORCID

Affiliation:

1. Department of Mechanical Engineering, Daulet Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk 070010, Kazakhstan

2. Surface Engineering and Tribology Research Center, Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk 070002, Kazakhstan

3. PlasmaScience LLP, Ust-Kamenogorsk 070010, Kazakhstan

4. Department of Mechanical Engineering, Sun Moon University, Asan 31460, Republic of Korea

5. Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland

Abstract

In this study, a surface hardening of AISI 52100 bearing steel was performed by ultrasonic nanocrystal surface modification (UNSM), and electrolytic-plasma thermo-cyclic surface modification (EPSM), and their effects on the wear resistance were investigated. To evaluate the impact of these treatments on the wear resistance, the friction tests under dry conditions were conducted using a ball-on-disk tribometer in accordance with ASTM G99. The microstructure of the samples before and after treatment was characterized by scanning electron microscopy. The micro-hardness with respect to the depth from the top surface was measured using a Vickers micro-hardness tester. Microstructural observations showed that EPSM treatment led to the formation of residual austenite in the surface layer, while UNSM treatment led to the formation of a surface severe plastic deformation layer on the surface of the samples. The increase in the micro-hardness of the treated layer was confirmed after UNSM at room temperature and after EPSM at different cycles. The highest increase in wear resistance was observed for the specimen treated by UNSM treatment at 700 °C and five cycles of EPSM treatment. In addition, the wear volume, which has correlation with the friction coefficient and hardness, was determined.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3