Peculiarities of the Structure of Au-TiO2 and Au-WO3 Plasmonic Nanocomposites

Author:

Sagidolda Yerulan12ORCID,Yergaliyeva Saule1,Tolepov Zhandos12,Ismailova Guzal1,Orynbay Bakytzhan12,Nemkayeva Renata2ORCID,Prikhodko Oleg1,Peshaya Svetlana1ORCID,Maksimova Suyumbika1,Guseinov Nazim2,Mukhametkarimov Yerzhan12

Affiliation:

1. Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan

2. National Nanotechnology Laboratory of Open Type, Al-Farabi av. 71/23, Almaty 050040, Kazakhstan

Abstract

As nanotechnology continues to advance, the study of nanocomposites and their unique properties is at the forefront of research. There are still various blank spots in understanding the behavior of such composite materials, especially regarding plasmonic effects like localized surface plasmon resonance (LSPR) which is essential for developing advanced nanotechnologies. In this work, we explore the structural properties of composite thin films consisting of oxide matrices and gold nanoparticles (Au NPs), which were prepared by radio-frequency magnetron sputtering. Titanium dioxide (TiO2) and tungsten trioxide (WO3) were chosen as the host matrices of the composites. Such composite thin films owing to the presence of Au NPs demonstrate the LSPR phenomenon in the visible region. It is shown, that spectroscopic study, in particular, Raman spectroscopy can reveal peculiar features of structures of such composite systems due to LSPR and photoluminescence (PL) of Au NPs in the visible spectrum. In particular, defect peaks of TiO2 (700–720 cm−1) or WO3 (935 cm−1) in Raman spectra can be clearly observed when the samples are illuminated with a 633 nm excitation laser. Excitation with 532 nm leads to a decrease in the intensity of the defect peak, which totally disappears at 473 nm excitation. Such dependences of the defect peaks on excitation laser wavelength are probably related to the polarization of the matrix’s defective regions close to the interface with gold NPs.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3