Electrical Percolation Threshold and Size Effects in Polyvinylpyrrolidone-Oxidized Single-Wall Carbon Nanohorn Nanocomposite: The Impact for Relative Humidity Resistive Sensors Design

Author:

Serban Bogdan-Catalin,Cobianu Cornel,Dumbravescu Niculae,Buiu OctavianORCID,Bumbac Marius,Nicolescu Cristina MihaelaORCID,Cobianu Cosmin,Brezeanu Mihai,Pachiu Cristina,Serbanescu Matei

Abstract

This paper reports, for the first time, on the electrical percolation threshold in oxidized carbon nanohorns (CNHox)–polyvinylpyrrolidone (PVP) films. We demonstrate—starting from the design and synthesis of the layers—how these films can be used as sensing layers for resistive relative humidity sensors. The morphology and the composition of the sensing layers are investigated through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and RAMAN spectroscopy. For establishing the electrical percolation thresholds of CNHox in PVP, these nanocomposite thin films were deposited on interdigitated transducer (IDT) dual-comb structures. The IDTs were processed both on a rigid Si/SiO2 substrate with a spacing of 10 µm between metal digits, and a flexible substrate (polyimide) with a spacing of 100 µm. The percolation thresholds of CNHox in the PVP matrix were equal to (0.05–0.1) wt% and 3.5 wt% when performed on 10 µm-IDT and 100 µm-IDT, respectively. The latter value agreed well with the percolation threshold value of about 4 wt% predicted by the aspect ratio of CNHox. In contrast, the former value was more than an order of magnitude lower than expected. We explained the percolation threshold value of (0.05–0.1) wt% by the increased probability of forming continuous conductive paths at much lower CNHox concentrations when the gap between electrodes is below a specific limit. The change in the nanocomposite’s longitudinal Young modulus, as a function of the concentration of oxidized carbon nanohorns in the polymer matrix, is also evaluated. Based on these results, we identified a new parameter (i.e., the inter-electrode spacing) affecting the electrical percolation threshold in micro-nano electronic devices. The electrical percolation threshold’s critical role in the resistive relative-humidity sensors’ design and functioning is clearly emphasized.

Funder

Ministry of European Funds

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3