Indoor Localization Method of Personnel Movement Based on Non-Contact Electrostatic Potential Measurements

Author:

Man MenghuaORCID,Zhang YongqiangORCID,Ma GuileiORCID,Zhang Ziqiang,Wei Ming

Abstract

The indoor localization of people is the key to realizing “smart city” applications, such as smart homes, elderly care, and an energy-saving grid. The localization method based on electrostatic information is a passive label-free localization technique with a better balance of localization accuracy, system power consumption, privacy protection, and environmental friendliness. However, the physical information of each actual application scenario is different, resulting in the transfer function from the human electrostatic potential to the sensor signal not being unique, thus limiting the generality of this method. Therefore, this study proposed an indoor localization method based on on-site measured electrostatic signals and symbolic regression machine learning algorithms. A remote, non-contact human electrostatic potential sensor was designed and implemented, and a prototype test system was built. Indoor localization of moving people was achieved in a 5 m × 5 m space with an 80% positioning accuracy and a median error absolute value range of 0.4–0.6 m. This method achieved on-site calibration without requiring physical information about the actual scene. It has the advantages of low computational complexity and only a small amount of training data is required.

Funder

the National Key Laboratory of Scientific and Technology Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Indoor Occupancy Awareness and Localization Using Passive Electric Field Sensing

2. Platypus—Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies;Grosse-Puppendahl;Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services,2016

3. Bluetooth Low Energy Based Occupancy Detection for Emergency Management;Filippoupolitis;Proceedings of the 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS),2017

4. An alternative approach to monitor occupancy using bluetooth low energy technology in an office environment

5. Sentinel: Occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings;Balaji;Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3