Application of Hybrid Deep Reinforcement Learning for Managing Connected Cars at Pedestrian Crossings: Challenges and Research Directions

Author:

Brunoud Alexandre1ORCID,Lombard Alexandre1ORCID,Gaud Nicolas1ORCID,Abbas-Turki Abdeljalil1ORCID

Affiliation:

1. CIAD Laboratory, University of Technology Belfort-Montbéliard, F-90010 Belfort, France

Abstract

The autonomous vehicle is an innovative field for the application of machine learning algorithms. Controlling an agent designed to drive safely in traffic is very complex as human behavior is difficult to predict. An individual’s actions depend on a large number of factors that cannot be acquired directly by visualization. The size of the vehicle, its vulnerability, its perception of the environment and weather conditions, among others, are all parameters that profoundly modify the actions that the optimized model should take. The agent must therefore have a great capacity for adaptation and anticipation in order to drive while ensuring the safety of users, especially pedestrians, who remain the most vulnerable users on the road. Deep reinforcement learning (DRL), a sub-field that is supported by the community for its real-time learning capability and the long-term temporal aspect of its objectives looks promising for AV control. In a previous article, we were able to show the strong capabilities of a DRL model with a continuous action space to manage the speed of a vehicle when approaching a pedestrian crossing. One of the points that remains to be addressed is the notion of discrete decision-making intrinsically linked to speed control. In this paper, we will present the problems of AV control during a pedestrian crossing, starting with a modelization and a DRL model with hybrid action space adapted to the scalability of a vehicle-to-pedestrian (V2P) encounter. We will also present the difficulties raised by the scalability and the curriculum-based method.

Funder

Bourgogne Franche-Comté region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3