Optimal Transport Pricing in an Age of Fully Autonomous Vehicles: Is It Getting More Complicated?

Author:

Tscharaktschiew StefanORCID,Evangelinos ChristosORCID

Abstract

Over the last several decades, transportation scientists have made substantial progress in identifying and tackling transport-related problems by elaborating sophisticated policy instruments. Originally, the policy instruments were developed and designed to tackle inefficiencies caused by conventional (human-driven) vehicles. However, questions remain regarding transportation policies, especially pricing instruments, in the future. With the advent of fully autonomous vehicles (driverless or self-driving cars), many of potentially disruptive changes to our transportation system are projected to occur. This gives rise to the question of how to adapt the existing, well established, policy instruments to make them applicable to a world of self-driving cars. The present paper utilizes one of the most widely deployed, most important (in terms of tax revenue), and most effective (in terms of carbon dioxide mitigation) current price-based policy instruments in the transport sector (i.e., the energy tax) to show how one of the most innovative features associated with fully autonomous vehicles (i.e., driverless vehicle relocation) affects the optimal design of a transportation tax. We adopt a microeconomics optimization framework and analytically derive the optimal energy tax under the assumption that driverless vehicle relocation is possible. Our main finding is that in a world of self-driving cars, the energy tax (likewise, a second-best miles tax) as a price-based policy instrument becomes more difficult to evaluate. With the capability of fully autonomous vehicles to relocate without passengers inside, the (analytical) expression for the optimal energy tax becomes more complex, and its (numerical) determination becomes more difficult since the feature of driverless vehicle repositioning imposes counteracting welfare effects as a response to a tax change. Policymakers and researches are encouraged to take on the challenge of increasing complexity to tackle transport-related inefficiencies in the era of self-driving cars.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3