User Characteristic Aware Participant Selection for Mobile Crowdsensing

Author:

Wu Dapeng,Li Haopeng,Wang Ruyan

Abstract

Mobile crowdsensing (MCS) is a promising sensing paradigm that leverages diverse embedded sensors in massive mobile devices. One of its main challenges is to effectively select participants to perform multiple sensing tasks, so that sufficient and reliable data is collected to implement various MCS services. Participant selection should consider the limited budget, the different tasks locations, and deadlines. This selection becomes even more challenging when the MCS tries to efficiently accomplish tasks under different heat regions and collect high-credibility data. In this paper, we propose a user characteristics aware participant selection (UCPS) mechanism to improve the credibility of task data in the sparse user region acquired by the platform and to reduce the task failure rate. First, we estimate the regional heat according to the number of active users, average residence time of users and history of regional sensing tasks, and then we divide urban space into high-heat and low-heat regions. Second, the user state information and sensing task records are combined to calculate the willingness, reputation and activity of users. Finally, the above four factors are comprehensively considered to reasonably select the task participants for different heat regions. We also propose task queuing strategies and community assistance strategies to ensure task allocation rates and task completion rates. The evaluation results show that our mechanism can significantly improve the overall data quality and complete sensing tasks of low-heat regions in a timely and reliable manner.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3