Abstract
This study aimed to assess the effect of mechanical pretreatment on bleached eucalyptus kraft pulp fibers and investigate the influence of reaction time and temperature on the properties and yield of nanocrystalline cellulose (NCC) and microcrystalline cellulose (MCC). Two types of pulps were hydrolyzed, pulp 1 (control, whole fibers) and pulp 2 (mechanically pretreated, disintegrated fibers). NCC and MCC particles were obtained by sulfuric acid hydrolysis (60% w/w) of eucalyptus pulps under different conditions of time (30–120 min) and temperature (45–55 °C). Physical treatment of kraft pulp facilitated acid hydrolysis, resulting in higher NCC yields compared with no pretreatment. The morphologic properties and crystallinity index (CI) of NCC and MCC were little affected by pulp pretreatment. NCC particles obtained from pulps 1 and 2 were needle-shaped, with mean diameters of 6 and 4 nm, mean lengths of 154 and 130 nm, and CI of 74.6 and 76.8%, respectively. MCC particles obtained from pulps 1 and 2 were rod-shaped, with mean diameters of 2.4 and 1.4 µm, mean lengths of 37 and 22 µm, and CI of 73.1 and 74.5%, respectively. Pulps 1 and 2 and their respective NCC and MCC derivatives had a cellulose I crystalline structure.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献