Abstract
In order to obtain the physiological information and key features of source images to the maximum extent, improve the visual effect and clarity of the fused image, and reduce the computation, a multi-modal medical image fusion framework based on feature reuse is proposed. The framework consists of intuitive fuzzy processing (IFP), capture image details network (CIDN), fusion, and decoding. First, the membership function of the image is redefined to remove redundant features and obtain the image with complete features. Then, inspired by DenseNet, we proposed a new encoder to capture all the medical information features in the source image. In the fusion layer, we calculate the weight of each feature graph in the required fusion coefficient according to the trajectory of the feature graph. Finally, the filtered medical information is spliced and decoded to reproduce the required fusion image. In the encoding and image reconstruction networks, the mixed loss function of cross entropy and structural similarity is adopted to greatly reduce the information loss in image fusion. To assess performance, we conducted three sets of experiments on medical images of different grayscales and colors. Experimental results show that the proposed algorithm has advantages not only in detail and structure recognition but also in visual features and time complexity compared with other algorithms.
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献