Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides

Author:

Tang Jie,Liu Yi-Ran,Zhang Li-Jiang,Fu Xing-Chang,Xue Xiao-Mei,Qian Guang,Zhao Ning,Zhang Tong

Abstract

A flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton (LRSPP) waveguide for microwave photonic application was investigated. Low-loss polymer materials and high-quality silver strip were served as cladding layers and core layer of the LRSPP waveguide, respectively. By using finite element method (FEM), the thermal distribution and the optical field distribution have been carefully optimized. The fabricated device was characterized by end-fire excitation with a 1550 nm laser. The transmission performance of high-speed data and microwave modulated optical signal was measured while using a broadband microwave photonics link. The results indicated that the propagation loss of the LRSPP waveguide was about 1.92 dB/cm. The maximum attenuation of optical signal was about 28 dB at a driving voltage of 4.17 V, and the variable attenuation of microwave signals was obviously observed by applying different driving voltage to the heater. This flexible plasmonic variable attenuator is promising for chip-scale interconnection in high-density photonic integrated circuits and data transmission and amplitude control in microwave photonic systems.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3