Synthetic Aperture Radar Image Despeckling Based on Multi-Weighted Sparse Coding

Author:

Liu Shujun,Pu Ningjie,Cao Jianxin,Zhang Kui

Abstract

Synthetic aperture radar (SAR) images are inherently degraded by speckle noise caused by coherent imaging, which may affect the performance of the subsequent image analysis task. To resolve this problem, this article proposes an integrated SAR image despeckling model based on dictionary learning and multi-weighted sparse coding. First, the dictionary is trained by groups composed of similar image patches, which have the same structural features. An effective orthogonal dictionary with high sparse representation ability is realized by introducing a properly tight frame. Furthermore, the data-fidelity term and regularization terms are constrained by weighting factors. The weighted sparse representation model not only fully utilizes the interblock relevance but also reflects the importance of various structural groups in despeckling processing. The proposed model is implemented with fast and effective solving steps that simultaneously perform orthogonal dictionary learning, weight parameter updating, sparse coding, and image reconstruction. The solving steps are designed using the alternative minimization method. Finally, the speckles are further suppressed by iterative regularization methods. In a comparison study with existing methods, our method demonstrated state-of-the-art performance in suppressing speckle noise and protecting the image texture details.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3