Cryogenic Cooling in Wireless Communications

Author:

Markiewicz Tomasz G.,Wesołowski Krzysztof W.

Abstract

Improving the capacity and performance of communication systems is typically achieved by either using more bandwidth or enhancing the effective signal-to-noise ratio (SNR). Both approaches have led to the invention of various transmission techniques, such as forward error correction (FEC), multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA), and many, many others. This paper, however, focuses on the idea that should be immediately apparent when looking at Shannon’s channel capacity formula, but that somehow remained less explored for decades, despite its (unfortunately only in theory) limitless potential. We investigate the idea of improving the performance of communication systems by means of cryogenic cooling of their RF front-ends; the technique, although widely-known and used in radio astronomy for weak signal detection, has attracted limited interest when applied to wireless communications. The obtained results, though mainly theoretical, are promising and lead to a substantial channel capacity increase, implying an increase in spectral efficiency, potential range extension, or decreasing the power emitted by mobile stations. We see its applications in base stations (BSs) of machine-type communication (MTC) and Internet of Things (IoT) systems.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3