Author:
Eriksson Karl-Erik,Lindgren Kristian
Abstract
We model quantum measurement of a two-level system μ . Previous obstacles for understanding the measurement process are removed by basing the analysis of the interaction between μ and the measurement device on quantum field theory. This formulation shows how inverse processes take part in the interaction and introduce a non-linearity, necessary for the bifurcation of quantum measurement. A statistical analysis of the ensemble of initial states of the measurement device shows how microscopic details can influence the transition to a final state. We find that initial states that are efficient in leading to a transition to a final state result in either of the expected eigenstates for μ , with ensemble averages that are identical to the probabilities of the Born rule. Thus, the proposed scheme serves as a candidate mechanism for the quantum measurement process.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献