Mechanism Study and Performance Evaluation of Nano-Materials Used to Improve Wellbore Stability

Author:

Ye Yan12,Song Hanxuan23,Zhu Jinzhi4,Zheng Weiru12,Zhou Fujian23,Zhou Guangxu12,Zhang Qingwen12

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

2. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China

3. Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China

4. Oil and Gas Engineering Research Institute of Tarim Oilfield, Tarim 843300, China

Abstract

In the drilling process of Tarim Oilfield, a representative of ultra-deep oil and gas reservoirs, there are many problems of wellbore stability/instability caused by the development of a large number of micro-fractures. According to the nano-plugging mechanism, rigid nano-SiO2 and deformable nano-paraffin emulsion are added to the drilling fluid to improve the plugging rate. The effect of nanomaterials on the mechanical properties of limestone in the Karatal Formation was evaluated through a triaxial mechanical experiment, and it was found that rigid nano-SiO2 can have a better plugging effect under high formation pressure. It can increase the compressive strength of the limestone core by 10.32% and the cohesion of the core by 12.19%, and the internal friction angle of the core was increased from 25.67° to 26.39°. The internal structure of the core after nano-blocking was observed using CT scanning, and the fracture distribution state of the core before and after plugging and the fracture characteristics of the core under the pressure gradient were obtained, which confirmed that nano-SiO2 can effectively solve the fracture problem of deep limestone caused by micro-fractures.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3